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ABSTRACT 

There exist torsion-free finitely presented groups satisfying i?-Poincare duality, 

which are nonetheless not the fundamental group of a closed aspherical i?-homology 

manifold (answering a question posed in [DavOO]); the construction combines 

Bestvina-Brady Morse theory with an acyclic variant of M. Davis' reflection group 

trick. 

That this is possible suggests replacing aspherical with acyclic universal cover: 

is every finitely presented jR-Poincare duality group the fundamental group of a 

.R-homology manifold with i?-acyclic universal cover? This question can be asked 

even for groups containing torsion; we construct examples of such groups for all 

ZCRCQ. 

However, we also show that this is rather exceptional: uniform lattices in 

semisimple Lie groups which contain p-torsion (for p ^ 2) do not act freely on 

Q-acyclic Q-homology manifolds; obstructions include an equivariant finiteness 

obstruction and a lifting problem for rational controlled symmetric signatures. 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical Context 

Borel's famous conjecture asserts that aspherical manifolds are topologically rigid. 

Conjecture 1.1.1 (Borel). Suppose / : M —»• N is a homotopy equivalence between 

closed aspherical manifolds; then / is homotopic to a homeomorphism. 

Given the conjectured uniqueness of aspherical manifolds, an existence question 

remains: which groups IT are fundamental groups of closed aspherical manifolds? 

A necessary condition is that K(TT, 1) satisfy Poincare duality (in which case we 

call 7r a "Poincare duality group" [JW72]). Wall asked whether this suffices. 

Question 1.1.2 (Wall in [Wal79], problem G2, page 391). Is every Poincare duality 

group r the fundamental group of a closed K(T, 1) manifold? Smooth manifold? 

Manifold unique up to homeomorphism? 

The history of this problem is discussed in [FRR95a], [FRR95b], and [DavOO]. 

Bryant-Ferry-Mio-Weinberger have developed a surgery theory for ANR Z-

homology manifolds [BFMW96, BFMW93]; compared to surgery theory for topo­

logical manifolds, surgery theory for ANR Z-homology manifolds has an improved 

Siebenmann periodicity—one hint that ANR Z-homology manifolds are more basic 

objects than topological manifolds. 

Conjecture 1.1.3 (Bryant-Ferry-Mio-Weinberger). If a finitely presented group ir 

satisfies Poincare duality, then ir is the fundamental group of an aspherical closed 

ANR Z-homology manifold. 
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Their work shows that this conjecture follows from (an algebraic restatement of) 

the Borel conjecture. For instance, recent work of Bartels and Luck [BL09] implies 

Conjecture 1.1.3 when T is hyperbolic and dim > 5, while Wall's original question 

can be affirmed only under more restrictive conditions on the Gromov boundary 

(see [Gro81]). 

1.2 Main Question 

The existence and uniqueness questions for closed aspherical Z-homology manifolds 

can be formulated for .R-homology manifolds. Mike Davis does this in [DavOO]; his 

question asks if some algebra (i.e., having .R-Poincare duality) is necessarily a 

consequence of some geometry (i.e., being an .R-hornology manifold). 

Question 1.2.1 (M. Davis). Is every torsion-free finitely presented group satisfying 

.R-Poincare duality the fundamental group of an aspherical closed .R-homology 

n-manifold? 

We prove in Chapter 3 that the answer to the above question is no. However, 

the construction of the counterexample, as well as the spirit of the original question, 

suggests weakening the conclusion. 

Question 1.2.2 (Acyclic variant of a question of M. Davis). Suppose T is a finitely 

presented group satisfying .R-Poincare duality. Is there a closed .R-homology man­

ifold M, with 

• -K\M = T, and 

• H^M-jR) = i/*(o;i?), in other words, .R-acyclic universal cover? 

Instead of asking for an aspherical homology manifold (as in M. Davis' original 

question), this modified question only asks that the homology manifold have R-

acyclic universal cover. Nevertheless, a group acting geometrically and cocom-

pactly on an .R-acyclic .R-homology manifold still possesses .R-Poincare duality, 

so the setup in Question 1.2.2 provides a "geometric source" for the .R-Poincare 

duality of a group. 
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By asking for an jR-acyclic universal cover, we permit the possibility that the 

group contains torsion. In Chapter 4, we will construct examples illustrating this 

possibility. 

Theorem 1.3.1. Let G = Z x Z/nZ. Then there exists a Q-homology manifold 

M so that -K\M retracts onto G, and M is Q-acyclic. 

However, in Chapter 5, we show that, for many groups, such Q-homology manifolds 

do not exist. 

Theorem 1.3.2. Let T be a uniform lattice in a semisimple Lie group containing 

p-torsion (forp ^ 2). There does not exist an ANR Q-homology manifold X, with 

-K\X = F, and Q-acyclic universal cover X. 

The theorem answers Question 1.2.2 in the negative. Ignoring an orientation 

issue, these groups F are virtually Z-Poincare duality groups (in fact, they are 

virtually the fundamental groups of aspherical closed manifolds); such a "virtual 

manifold group" satisfies Q-Poincare duality, but, by Theorem 1.3.2, need not be 

the fundamental group of a Q-homology manifold with Q-acyclic universal cover. 

This can also be looked at from the perspective of orbifolds: the locally sym­

metric space K\G/T is an orbifold, and the "orbifold fundamental group" is F, 

but what about the usual fundamental group TTI(F\G/K)? Such F cannot be the 

fundamental group of K\G/F, or any ANR Q-homology manifold with Q-acyclic 

universal cover. 

If a group satisfying Q-Poincare duality has any hope of being the fundamental 

group of a compact ANR Q-homology manifold, it must satisfy a particular finite-

ness property: specifically, the group must be the fundamental group of a compact 

space with Q-acyclic universal cover. In Chapter 4, we study this question in 

greater generality. 
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i - + - 7 r - > r - * G - > i 

with B-K a finite complex and G a finite group; the group G acts on BTC, and if, 

for all nontrivial subgroups H C G, and every connected component C of the fixed 

set(B<K)H, 

x(C) = o, 

then there exists a compact space X with w\X = T and X rationally acyclic. 

In addition to the sufficient condition stated in this theorem, a necessary condition 

is that x ({Bnpg' J = 0 for all nontrivial cyclic subgroups (g) C G. The finiteness 

question can be studied even for nonuniform lattices T. 

The proof of Theorem 1.3.3 uses the equivariant finiteness theory of W. Luck 

[Luc89], but we recast it in somewhat different language (akin to [DL98, DL03]), 

making it more obviously functorial. In any case, the hypotheses of the Theo­

rem 1.3.3 are not hard to satisfy: for instance, by crossing with Sl, or by guar­

anteeing that the fixed sets are all odd-dimensional manifolds, and therefore have 

vanishing Euler characteristic. Producing a Q-homology manifold (as in Theo­

rem 1.3.2) is further obstructed by higher signatures, which will not vanish even 

after crossing with S1 . 
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CHAPTER 2 

PRELIMINARIES 

Throughout, E-homology manifold means ANR .R-homology manifold. 

2.1 Finiteness properties 

There are many properties which measure the "finiteness" of a(n ironically often 

infinite) group; there are many such properties, which have been given short names 

like F, FP, etc. A good reference is [Bro82]. 

The first finiteness properties we consider are topological. 

Definition 2.1.1. Let Y be a group; if BY has the homotopy type of a complex 

K with its n-skeleton a finite complex, we say T has property F n ; in the case 

where BY has the homotopy type of a finite complex, we say Y has property F. 

For convenience, we confuse these properties with the classes of groups satis­

fying them, allowing us to write 'T G F" to mean that Y satisfies F. Note that F 

is a proper subclass of H/ieN^™- Additionally, some of the F n are equivalent to 

more familiar properties. 

Proposition 2.1.2. A group G is ¥\ if and only if G is finitely generated. 

A group G is F2 if and only if G is finitely presented. 

Property FH, introduced in [BB97], is a homological variant of the homotopical 

property F. 

Definition 2.1.3. Let T be a group; if Y acts freely, faithfully, properly discon-

tinuously, cellularly, and cocompactly on a cell complex X with 

Hk(X; R) = Hk(»; R) for 0 < k < n - 1, 
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then we say T has property FHn(i?). If T acts as above on an i?-acyclic complex 

X, then we say T has property FH(i2). 

Complementing these topological finiteness conditions, there are other finite-

ness properties which are more algebraic. 

Definition 2.1.4. Let T be a group; if the trivial i2r-module R admits a resolution 

Mn-*•••'-* MQ-*R-

with the M{ finitely generated projective iiT-modules, we say that F has property 

FP n . If the trivial .fiT-module R admits a finite length resolution by finitely 

generated projective iiT-modules, we say that T has property FP. 

As for F, note that FP is a proper subclass of pln epjFPn . 

Analogous to property FP, there is a property FL, satisfied by groups admitting 

finite length resolutions by finitely generated free modules. 

Definition 2.1.5. Let T be a group; if the trivial iff-module R admits a resolution 

Mn •->• • M 0 - * R 

with the Mi finitely generated free iiT-modules, we say that T has property FLn. 

If the trivial fiT-module R admits a finite length resolution by finitely generated 

free iiT-modules, we say that V has property FL. 

2.2 Poincare duality groups 

Our main goal is to understand the difference between those groups which sat­

isfy Poincare duality, and those which are fundamental groups of certain kinds of 

manifolds. 

Definition 2.2.1. A group T is an n-dimensional R-Poincare duality group, writ­

ten T € PD„(i2), if 
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- T is FP(JR), 

• Hn(BT; RF) = R, and Hk(BT; RT) = 0 for k^n. 

Some authors also consider duality groups, without the FP(7?) condition, and per­

mitting other "orientation modules" besides the ring iteslf [BE73]. K. Brown shows 

that, when R = Z, FP(Z) is implied by the homological condition alone [Bro75]. 

It is important to realize that T G F~P(R) does not imply T G FH(i?); in other 

words, the definition of PD(R) includes an algebraic finiteness condition but not a 

geometric, finiteness condition. However, Poincare duality can also be phrased in 

more geometric language: 

Proposit ion 2.2.2. A group T G PDn(R) if and only if BY is an R-Poincare 

duality complex. 

2.3 Manifold groups 

Traditioanlly, a group ir is an "aspherical n-rnanifold group" means that BIT has 

the homotopy type of a closed n-manifold. We broaden this class to include the 

possibility of closed aspherical homology manifolds. 

Definition 2.3.1. A group is an aspherical R-homology n-manifold group if it is 

the fundamental group of a closed aspherical .R-homology n-manifold. If T is such 

a group, we write T G AsphMfldn(i?). 

Obviously, such a group has a finite classifying space, i.e., 

Proposit ion 2.3.2. AsphMfldn(JR)c F. 

Using our notation, Davis' original question can be phrased as whether 

AsphMfldri(i?) = PDn(R)n F2 fl{torsion-free groups}. 
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Asphericity is perhaps too restrictive; having .R-acyclic universal cover seems more 

natural in the context of .R-homology manifolds. 

Definition 2.3.3. A group is an R-homology n-manifold group if it is the funda­

mental group of an .R-homology n-manifold having .R-acyclic universal cover. If T 

is such a group, we write T € Mfldn(.R). 

The following proposition is obvious. 

Proposit ion 2.3.4. MMn(R) C FE(R). 

Acting freely on an .R-acyclic .R-homology manifold suffices to satisfy .R-Poincare 

duality. 

Proposit ion 2.3.5, Mfldn(i?) C PDn(R). 

2.4 Relationships 

The various finiteness properties and Poincare duality and manifold properties are 

related; these relationships are summarized in a diagram. 

AsphMfld c Mfld. C PD 

rv. n n 
F C FH C FL C FP 

Observe that the hierarchy of finiteness properties is mirrored by the hierarchy of 

manifold properties. Whether these inclusions are sharp is an important question: 

for example, it is not known whether FP(Z) = FL(Z) or whether Mfid(Z) = 

F 2 nPD(Z) , or even whether AsphMfldn(Z) = Mfldn(Z). 

Question 1.2.2 can be stated succintly as 

Question 2.4.1. Does MMn(R) equal F2 n PDn(JR)? 
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This is too naive: as we will see in chapter 4, differences between FL(i?) and FP(i?) 

can be detected via a finiteness obstruction. There are groups satisfying PDn(R) 

which satisfy FP(i?), but fail to satisfy FL(B), let alone FH(J?). 

What if we assume that the group satisfies FH(i?)? This is still insufficient to 

guarantee that the group satisfies Mfld(i?). 

Proposition 2.4.2. MMn(R) is a proper subclass o/F2n'PDn(-R) n FE{R) for 

R = q. 

Specifically, the material in chapter 5 will exhibit a group which is finitely 

presented, PDn(Q) and FH(Q), but not Mfldn(Q). 

However, if we assume further that the group satisfies F, our methods no longer 

apply, so we cannot answer the following interesting questions. 

Question 2.4.3. Does AsphMfkL^E) = FnPDn( i?)? 

Question 2.4.4. Does AsphMfldn(JR) = F D UMn(R)? 

2.5 Virtual properties 

Often, it is worthwhile comparing a group to its finite index subgroups, 

Definition 2.5.1. Let P be a class of groups (e.g., those groups satisfying a prop­

erty P); the class VP consists of those groups which contain a finite index subgroup 

in P (e.g., those groups which virtually satisfy the property P). 

For example, VF consists of those groups which contain a finite index subgroup 

H with K(H, 1) (homotopy equivalent to) a finite complex. Obviously P C VP, 

but in many cases the inclusion is proper. 

If a group virtually satisfies a property over the ring Z, the group might actually 

have the property over Q. For example, 

Proposition 2.5.2. VPD(Z) c PD(Q). 
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Proof. Proposition 4.5.5 implies that VPD(Z) C PD(Q). 

• 

However, C.T.C. Wall proved in [JW72] 

PD(Z) = VPD(Z) n {torsion-free groups} 

Contrasting with the fact that VPD(Z) C PD(Q), 

Proposition 2.5.3. VFH(Z) £ FH(Q). 

This follows from a finiteness obstruction, as we will see in Chapter 4. 

Proposition 2.5.4. VPD(Q) = PD(Q), but VMfld(Q) ^ Mfld(Q). 

In chapter 5, we will exhibit T G VMfid(Z) C VMfld(Q) with Y <£ Mfld(Q). 
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CHAPTER 3 

TORSION-FREE EXAMPLE 

3.1 Introduction 

In [Dav98], M. Davis combined Bestvina-Brady Morse theory with the reflection 

group trick to produce Poincare duality groups that are not finitely presented— 

and therefore, not fundamental groups of aspherical manifolds. With some care, 

this technique can be applied to rational Poincare duality groups and rational 

homology manifolds, answering Question 1.2.1 in the negative. 

Theorem 3.1.1. There exists a torsion-free, finitely presented PD(Q)-group T 

which is not the fundamental group of an aspherical closed Q-homology manifold. 

The construction of such a group T proceeds as follows: 

• Let X be a simply connected finite complex which is Q-acyclic but not Z-

acyclic. 

• Apply Bestvina-Brady Morse theory [BB97] to X; this produces a group 

G <£ FP(Z) with G G FH(Q), so G acts freely and cocompactly on a Q-

acyclic space; let K be the quotient of such a free action. 

• Apply a variant of M. Davis' reflection group trick [Dav83] to a thickened ver­

sion of K; after taking a cover, this produces a torsion-free group T satisfying 

PD(Q). 

• Verify that the Eilenberg-MacLane space K(T, 1) is not homotopy equivalent 

to a finite complex. 
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Closed ANR Q-homology manifolds are homotopy equivalent to finite complexes 

[Wes77]. Since K(T, 1) is not homotopy equivalent to a finite complex, T cannot 

be the fundamental group of an aspherical closed Q-homology manifold. 

Briefly, Bestvina-Brady Morse theory proves that F C FH(Q) is a strict in­

clusion, which will be promoted to a strict inclusion AsphMfld(Q) C Mfld(Q) via 

Davis' reflection group trick. 

3.1.1 Related questions 

Theorem 3.1.1 suggests varying the hypotheses or conclusion of Question 1.2.1. 

On the one hand, we can strenghten the hypotheses. The group V we construct 

fails to be a homology manifold group because of a nonzero finiteness obstruction. 

What if we assume that the finiteness obstruction vanishes? Are there groups T 

which are PD(i?) and with K(T, 1) having the homotopy type of a finite com­

plex, but which are not fundamental groups of aspherical i?-homology manifolds? 

In other words, is AsphMfld(i?) = FflPD(i?)? A related question is whether 

AsphMfld(E) = FnMfld(fl) holds. 

On the other hand, we can weaken the conclusion of Question 1.2.1, from 

aspherical to acyclic; the construction, after all, produced an acyclic example. We 

ask: are there finitely presented groups which are PD(i?) but nevertheless do not 

act freely on an i?-acyclic i?-homology manifold? Stated differently, is it the case 

that 

Mfid(E) = F 2 n FE(R) n PD(E)? 

Chapter 5 will prove this is not the case for R = Q, but those examples are not 

torsion-free. The possibility that 

MM(R) = F2 n FE(R) n PD(i?) n {torsion-free groups} 

remains open, though it certainly seems unlikely. 
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3.2 Definitions 

3.2.1 Groups from graphs 

In using PL Morse theory and the reflection group trick, we will be making use 

(respectively) of Artin groups and Coxeter groups. These are families of groups 

associated to graphs with edges labelled by integers. 

Definition 3.2.1. Let K be a, 1-complex with vertices v\,... ,vn; the edge con­

necting V{ and Vj has a label m^j G Z U {oo}; if there is no edge connecting V{ and 

vj, then we set iri{j = oo. By convention, mn — 1. 

The Artin group A^ associated to K has presentation 

(91, • • • ,9n\(9i9j)mij = 1 for 1 < i < j < n ). 

The Coxeter group CR associated to K has presentation 

<<7li • • • ,9n\(9i9j)mi^ = 1 for 1 < i < j < n >. 

In an Artin group, each gi generates an infinite cyclic group; in a Coxeter group, 

each gi generates Z/2, since we include the relator (gigi) — gi = 1 . 

Definition 3.2.2. When all the edge labels m^ for i ^ j are either 2 or oo, we call 

the resulting Coxeter (or Artin) group a right-angled Coxeter (or Artin) group. 

Proposition 3.2.3. An Artin group is torsion-free. 

A Coxeter group is virtually torsion-free. 

3.2.2 Flag triangulations 

Definition 3.2.4. A simplicial complex L is flag if, every inclusion of the 1-

skeleton of an n-simplex in L, 
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factors through an n-simplex, 

A„W c A„ C Z>. 

Being flag does not restrict the topology of the complex L, by the following result. 

Proposition 3.2.5. If K is a simplicial complex, and the simplicial complex L is 

the ban/centric subdivision of K, then L is flag. 

Flag complexes are determined by their 1-skeleton; a right-angled Coxeter 

group (or Artin group) can be built from this 1-skeleton (by giving each edge 

the label 2). 

3.2.3 CAT(O) complexes 

An excellent resource for CAT(O) complexes is the book by Bridson and Haefliger 

[BH99]. 

Definition 3.2.6. A path metric space X is CAT(O) if, for any geodesic triangle 

with vertices a,b,c£ X, the comparison triangle a', b', d G R2 is "thicker." 

A comparison triangle is a triangle in R having the same side lengths; a triangle 

is thicker if corresponding arcs (i.e., starting and ending at points having equal 

distances from the vertices) are no shorter in R2 than in X. . 

This is illustrated in Figure 3.1. 

Any CAT(O) space is contractible, so we are usually interested only in locally 

CAT(O) spaces, meaning that the CAT(O) inequality is satisfied for sufficiently 

small triangles. The most important feature of locally CAT(O) spaces is that, 

like Riemannian manifolds of nonpositive curvature, they are aspherical. Specifi­

cally, a simply connected locally CAT(O) space is globally CAT(O), and therefore, 

contractible. 

Additionally, for cubical complexes, CAT(O) is equivalent to a checkable condi­

tion on the links of vertices. The link of a vertex in a cubical complex is a simplicial 

complex. 
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Figure 3.1: Comparison triangles for the CAT(O) inequality 

Proposition 3.2.7. A cubical complex (with the Euclidean metric on each cube) 

is locally CAT(O) if the link of each vertex is a flag simplicial complex (see Defini­

tion 3.2.4). 

The property CAT(—1), for combinatorial strict negative curvature, has a similar 

definition, except that the comparisons are made not to the Euclidean plane, but to 

the hyperbolic plane H2. We will not have much need for CAT(—1), but veryifying 

CAT(O) will be a useful way to produce aspherical spaces. 

3.3 Construction 

In this section, we prove Theorem 3.1.1; specifically, we exhibit a torsion-free, 

finitely presented PD(Q)-group which is not the fundamental group of an aspherical 

finite complex, let alone a closed ANR Q-homology manifold. 
\ 

3.3.1 PL Morse theory 

We begin by producing a group which satisfies a rational finiteness property, but 

not an integral finiteness property. Choose a simply connected finite complex, X 
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which is Q-acyclic but not Z-acyclic; for the sake of concreteness, 

X = S2 U/ e3 with / : <9e3 = S2 - • S2 degree two. 

Let L be a flag triangulation of X._ 

There is a construction that transforms a flag complex (e.g., L) into a CAT(O) 

cubical complex; basically, one considers the union of tori 

a£Lv€a 

It is easy to check that the link of each vertex is L, and that, because L is flag, 

this means that X is CAT(O). 

The following theorem summarizes a result of Bestvina-Brady PL Morse theory 

[BB97]; this is a version of Morse theory designed to analyze spaces such as the 

above cubical complex. 

Theorem 3.3.1. Let L be a finite flag complex. Let A = A^ the associated right 

angled Artin group, and G = Gi the kernel of a natural map AT, —» Z. 

• If L is R-acyclic, then G G FH(JR). 

• If L is simply connected, then G is finitely presented. 

• If L is not R-acyclic, then G ^ FP(R). 

Let G = Gi for L simply connected and Q-acyclic but not Z-acyclic; then G 

is finitely presented and FH(Q), but not FP(Z). 

Since G G FH(Q), there is a finite complex K with it\K - G and H*(K; Q) = 0. 

3.3.2 An acyclic reflection group trick 

. Mike Davis introduced his reflection group trick in [Dav83]; his excellent book 

[Dav08] is an great reference, and includes all the proofs of the facts we need here. 
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Since K is a finite complex, there is an embedding K <-> E for some N; a 

regular neighborhood of K C R.^ is manifold iV with boundary cW. Observe that 

N deform retracts to K. An introduction to the theory of regular neighborhoods 

can be found in [RS72, Coh69]. 

The reflection group trick uses a Coxeter group to glue together copies of iV, 

transforming the manifold with boundary AT to a closed manifold W. 

We now describe how the copies of N are glued together. Choose a flag trian-

gulation L of ON; let G be the right-angled Coxeter group associated to this flag 

triangulation. For each vertex v G L, let Dv be the star of v in the barycentric 

subdivision V of L. Copies of N will be glued along "mirrors," namely the Dv; 

specifically, define 

W-=(NxG)/ ~ 

where (x^) ~ (x,gh) whenever x € D^. Choose a finite index torsion-free sub­

group G' of G, and let W = W/G'. An application of Mayer-Vietoris proves 

Proposit ion 3.3.2. W is a closed manifold, with Q-acyclic universal cover. 

Additionally, ir\W = G' x V is torsion-free, since G' and T are both torsion-free 

(the former by assumption, the latter because it is an Artin group). 

Proposit ion 3.3.3. The Eilenberg-MacLane space KfaW, 1) does not have the 

homotopy type of a finite complex. 

Proof. The group -K\W = G' x T retracts onto T, and so, K{ir\W, 1) retracts onto 

BY. If K(ITIW, 1) had the homotopy type of a finite complex, then BY would be 

a finitely dominated complex, and so Y G FP(Z). But Y was constructed (using 

Bestvina-Brady Morse theory) so that T ^ FP(Z). • 

The existence of such a group W proves Theorem 3.1.1. 

Having considered the torsion-free case, we now consider the situation with 

torsion. 
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CHAPTER 4 

FINITENESS 

4.1 Introduction 

The first obstruction to a PD(i?) group Y being the fundamental group of an as-

pherical i?-homology manifold is a finiteness obstruction: is BY homotopy equiv­

alent to a finite complex? 

This is too restrictive a condition on a group Y: for instance, if T has torsion, 

BY never has the homotopy type of a finite complex. Nevertheless, groups with 

torsion can be PD(R) groups, although not when .R = Z. 

To broaden the Poincare duality groups available for study, we consider groups 

with torsion, but instead of hopelessly seeking a contractible space with a free 

action, we will look for an acyclic space with a free action of our given group 

containing torsion. 

Question 4.1.1. For which groups Y does there exist a finite complex X with 

• #*(X;i2) = 0and 

• TTIX = T? 

In other words, which groups act "nicely" (e.g., properly discontinuously, cellu-

larly, cocompactly) on acyclic complexes? This is property FH(i?) of Bestvina and 

Brady, discussed earlier in section 2.1. Since FH(E) DMM(R), satisfying FH(i?) 

is neccessary for a PD(i?) group to be a manifold group. 

For ease of exposition, we will concentrate on virtually torsion-free groups, so 

there is a group extension 

l ^ n ^ Y - * G ^ l . 
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The general case can be dealt with using additional "orbi-" terminilogy, but is not 

necessary for the examples of most interest to us (see Selberg's lemma below). 

Assume Bit has the homotopy type of a finite complex (i.e., 7r G F), and G is a 

finite group, making T G VF. When does such a group act freely on an i?-acyclic 

complex, that is, for which T G VF is it the case that T G FH(i?)? The finite group 

G already acts on the finite complex BTT, but when can this action be improved to 

a free action on an acyclic space? 

This amounts to a finiteness obstruction. W. Luck designed an equivariant 

finiteness theory [Liic89]; in section 4.3 we will express his equivariant finiteness 

theory in more category theoretic language (similar to [DL98]), with the following 

result: 

Theorem 4.1.2. Let T G VF, so there is an extension 

I - ^ T T ^ T ^ G ^ I 

with BTT a finite complex and G a finite group; G acts on B-K (not fixing a base-

point), and if, for all nontrivial subgroups H C G, and every connected component 

Cof{Bit)H, 

X(C)=0, 

then T G,FH(Q), i.e., there exists a compact space X with -K\X = Y and X 

rationally acyclic. 

Since crossing with S^ guarantees % = 0, it is not too hard to produce examples: 

a group satisfying VF, after crossing with Z, satisfies FH(Q). 

In Section 4.2, we will also see that vanishing of certain Euler characteristics is 

necessary, namely x{{Bir)H) for cyclic subgroups H. 

4.2 Lefschetz fixed point theorem 

In order to take about Euler characteristics over various fields, we will write 

X(X;R) to mean X^( - l )Mim#j (X;E) . 
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The Lefschetz fixed point theorem ([Hat02], [Bro71]) will obstruct some groups 

from satisfying FH(E). 

Proposition 4.2.1. Suppose R is afield, and that 

l - n r - > r - > G - > l , 

with BIT homotopy equivalent to a finite complex, and G a finite group. If there 

exists a compact X having ~K\X = F and R-acyclic X, then, for all nontrivial 

geG, 

X ((£*)<»> ; i ? ) = 0 . 

Proof. The map X/w —> Bit is an i?-homology equivalence, and is G-equivariant 

(though not necessarily an equivariant homotopy equialvence). Consequently, 

X ((Birfe); R\ = trace (5* : H*(Bir; R) - • H+(BTT; R)). (by Lefschetz) 

= trace (g* : H*(X/TT; R) —• H*(X/ir; R) J (by G-equivariance) 

= 0 (by freeness of the G-action on X/TT). 

n 

Proposition 4.2.1 is strong enough to obstruct certain VF groups from satisfying 

F'H(Q). 

Example 4.2.2. The group Z/pZ acts on IP by permuting coordinates; Z/pZ also 

acts on the kernel of the map V —• Z given by adding coordinates. Use the action 

on the kernel to define T = IP'1 x Z/pZ. Since IP~l G F, we have T G VF. 

The action of Z/pZ on BIP~^ = (S'1)p _ 1 fixes p isolated points, so 

and hence Proposition 4.2.1 implies that F does not act freely on any Q-acyclic 

complex. 
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The proposition provides a necessary condition, but the given condition is far 

from sufficient. As we will see, a sufficient condition requires examining the Eu-

ler chacteristic of connected components of other subgroups, not just the cyclic 

subgroups. 

4.3 Finiteness oyer a category 

4.3.1 Categories over categories 

Definition 4.3.1. Let C be a small category, and Cat any category; we define a 

category C-Cat. 

• Obj C-Cat consists of functors F : C —• Cat, and 

• given two such functors F and G, the morphisms B.om^_Qa^ (F, G) are the 

natural transformations from F to G. 

This is the functor category and is usually denoted Cat , we use the alternate 

notation C-Cat, analogous to the equivariant notation for G-spaces. 

Example 4.3.2. The category Spaces is the category of compactly generated topo­

logical spaces; an object in C-Spaces is called a (covariant) C-space; a contravari-

ant C-space is just a covariant Cop-space. We likewise have C-AbGroups and 

C-i?-Mod, which form abelian categories and for which W. Luck has developed 

homological algebra [Liic89]. 

Proposition 4.3.3. Any functor F : A —> B induces 

C-F': C-A -> C-B 

by sending A : C - • A to C-F (A) = F o A. 

For instance, the fundamental groupoid functor II : Spaces —> Groupoids 

induces 

C-II: C-Spaces —> C-Groupoids. 
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At times, however, we would like to talk about the category of C-spaces, for a 

varying small category C. This desire is behind the following definition. 

Definition 4.3.4. Let A and B be categories, with A a subcategory of Cat, the 

category of small categories. Then the category 

A i B 

has as objects the functors F : A —> B, for A an object of A; in other words, an 

object of the category A J, B consists of a choice of an object A G A, and a functor 

from A to B. 

The morphisms Horn^ ig (F : A —> B, F' : A' —*• B) consist of a functor 

H : A —• A' with a natural transformation from F to F' o H. 

Remark 4.3.5. Although it will not be important in the sequel, note that A is a 

2-category (in the sense of a category enriched over Cat), and A J, B is likewise a 

2-category. 

Example 4.3.6. Consider the subcategory of Cat containing a single small category 

C and the identity functor; by abuse of notation, we call also this category C. Then 

C I B is the same thing as C-B constructed in Definition 4.3.1 

4.3.2 Balanced products 

A construction well-known to category theorists—that of a coend—gives a natural 

transformation from a bifunctor Cop x C —*• Cat to a constant functor [Mac71]. 

We apply this in the case of Cat, a monoidal category, to combine a contravariant 

and covariant C-object over Cat into an object of Cat. 

Definition 4.3.7. Let Cat be a monoidal category with product x; let A and B 

be contravariant and covariant C-objects, respectively. Then the balanced product 

of A and B, written A XQ B, is 

[J A(c)xB(c)/~ 
ceObjC 
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where (xf, y) ~ (x, fy) for x G A(d), y G JB(C), and / G Hom(c, d). 

We will be using balanced product in the context of spaces (under cartesian 

product of spaces) and modules (under tensor product of modules). 

The balanced product seems a bit abstract, but the balanced product (and 

coends more generally) is a abstraction of a well-known construction: geometric 

realization. 

Example 4.3.8. Define A, the simplicial category (see [May67]), where 

• Obj A consists of totally ordered finite sets, and 

• Hom^(A,-S) consists of order-preserving functions from A to B. 

Further define A to be the A-space, sending a totally ordered finite A to 

A(A).= (\A\ - l)-simplex, 

and an order-preserving function to the inclusion of simplices. 

A simplicial space is a functor X : A o p —* Spaces, i.e., an object of A o p -

Spaces. The balanced product of a simplicial space X with A (written I x ^ A ) , 

is the geometric realization of the simplicial space X. 

Example 4.3.9. Another instance of this construction appears when handling a 

complex of groups (an introduction to which appears in [Dav02]). That is, given a 

simplicial group, i.e., a functor X : A o p —* Groups, we want to put these groups 

together to form a single group—i.e., we consider X x ^ A , which is a group. 

4.3.3 Orbit category 

Definition 4.3.10. Define the orbit category of a group G, written Or(<7), as 

follows: 

- Obj Or(G) = {G/H : H a subgroup of G}, 

• liom.QTfG\(G/H,G/K) is the set of G-maps between the G-sets G/H and 

G/K. 
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Naturally associated to a G-space, there are both a contravariant and covariant 

Or(G)-spaces. 

Example 4.3.11. Let X be a (left) G-space; there is a contravariant Or(G)-space 

G/H^XH, 

with G/H - • G/H' sent to XH' c XH. 

Associated to X, there is also a covariant Or(G)-space 

G/H •-» X/H, 

with G/H -* G/H' sent to X/H -> X/H'. 

In fact, the reverse is possible: given a a contravariant Or(G)-space, we can 

recover a G-space. 
Proposition 4.3.12. A contravariant Or(G)-space is (naturally) a left G-space. 

Proof. The construction is formally similar to geometric realization (see Exam­

ple 4.3.8). 

Suppose X is a contravariant Or(G)-space. Let V be the covariant Or(G)-space 

given by sending G/H to itself, that is, to the finite set with the discrete topology. 

Then 
X ® O r ( G ) V 

is a (left) G-space. Specifically, g G G acts on X<S>Or(GQ^ ^ ^n e m a P 1<^®OT(G)^9 

where Lg : G/H —>• G/H is left multiplication by g. • 

4.3.4 if-theory 

An object in Groupoids J, i?-Mod is an "E[G]-module" for some groupoid G; 

we define certain (full) subcategories of Groupoids [ R-M.od, corresponding to 

finitely generated free and finitely generated projective J?[G]-modules. We will 

speak of both contravariant and covariant i?[G]-modules. 
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Definition 4.3.13. A complex in Groupoids | .R-Mod is a collection of such 

modules M{ (with i £ Z) and maps d{ : M{ —*• M{_\. We say the complex is 

bounded if all but finitely many of the modules are zero. 

Write Cplx (Groupoids [ .R-Mod) for the category of complexes of finitely 

generated projective /^-modules over a groupoid; maps between complexes are 

chain maps. 

As is usually the case, "free" is adjoint to "forgetful" (i.e., the forgetful functor 

from Groupoids [ i?-Mod to Groupoids J, Sets). 

Definition 4.3.14 (see page 167, [Liic89]). A module M in Groupoids J, -R-Mod 

is a free module with basis B <Z M, an object in Groupoids [ Sets, if, for any 

object N in Groupoids j, .R-Mod and map / : B —> N, there is a unique 

morphism F : M —> N extending / . 

In addition to free modules with basis B, we can speak about modules generated 

by a particular subset. 

Definition 4.3.15 (see page 168, [Liic89]). Suppose M is an object in the category 

Groupoids j .R-Mod, and S is a subset (i.e., an object in Groupoids j Sets). 

Then the span of S is the smallest module containing S, namely, 

span S = f]{N : S C N and N is a submodule of M }. 

If S is a finite set (i.e., finite over the indexing category, meaning S(g) is a finite 

set for each object g in the groupoid), we say that spans' is finitely generated. 

Definition 4.3.16 (see page 169, [Liic89]). A module P in Groupoids j .R-Mod 

is projective if either of the following equivalent conditions holds: 

• Each exact sequence 0—>M—> N —»P—>0 splits. 

• P is a direct summand of a free module. 
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Having studied these modules, we can define an appropriate K-iheory for the 

category Groupoids j i?-Mod, via Waldhausen categories [Wal85] as in [Liic89]. 

This if-theory is the correct receiver for the Euler characteristic. 

Definition 4.3.17. The Euler characteristic x of a bounded complex (Mj,dj) in 

Cplx (Groupoids | i?-Mod) is 

X{ • M0 -•) = ^2(-iy[Mi] Gif0 (Groupoids | R-Mod). 
iez 

4.3.5 Chain complex of the universal cover 

In Wall's fmiteness obstruction for a space X, the most important object is C(X), 

the J?[7TiX]-chain complex of the universal cover of X. This is traditionally denoted 

by C*{X]R), but we will write C(X) to emphasize the functorial nature of the 

construction. 

However, the usual construction is insufficiently functorial: C transforms a 

space X into a chain complex over a ring that depends on the group it\X; con­

sequently, it is not clear what the target category of C ought to be. Worse, only 

basepoint preserving maps X —• X induce endomorphisms of C(X). 

The definition of A [ B is> exactly what we need to define the target of the 

functor C, and by using the fundamental groupoid instead of the fundamental 

group, we avoid the basepoint issue: any self-map of X will induce a self-map of 

C(X). 

Before we can define C, we define the universal cover functor. The functor 

— : Spaces —* Groupoids | Spaces sends a space X to the functor X : HX —*• 

Spaces. This latter functor sends a object in UX, which is just a point x G X, to 

the universal cover of X using x as the base point. 

The functor C : Spaces —>• Cplx (.R-Mod) sends a space to its singular R-

chain complex. Note that this induces a functor 

Groupoids | C : Groupoids | Spaces Groupoids | Cplx (.R-Mod) 
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Not too surprisingly, we compose — and Groupoids j. C. 

Definition 4.3.18 (See page 259, [Luc89]). The functor 

C : Spaces —>• Cplx (Groupoids I i?-Mod) 

sends a space X to C(X). In other words, C is the composition of functors 

- • Groupoids|C 
Spaces —> Groupoids [ Spaces >• Groupoids | Cplx (i?-Mod). 

Note that there is a natural map 

Groupoids J Cplx (R-Mod) -> Cplx (Groupoids | R-Mod). 

As a result of the improved functoriality of C, we can apply C over a small category 

C (via Proposition 4.3.3), to get 

C-C : C-Spaces -> C-Cplx (Groupoids | R-Mod) 

. -> Cplx(C | (Groupoids | R-Mod)). 

4.3.6 Instant finiteness obstruction 

Our goal is to define maps 

Wall: FindomSpaces —> KQ (Groupoids J, fi-Mod), 

Wall: FindomSpaces —* KQ (Groupoids [ R-Mod), 

so that Wall ^ 0 obstructs an .R-finitely dominated space from being i?-homotopy 

equivalent to a finite complex. There are a few terms that need to be defined. 

Here, FindomSpaces is a built from a full subcategory of Spaces, consisting 

of those spaces which are R-finitely dominated, but we the choice of domination is 

part of the data. 
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Definition 4.3.19. A space Y is R-dominated by X if there are maps 

Y ^X-^Y 

with r o % : Y —> V an i?-homotopy equivalence. 

Definition 4.3.20. A space is R-finitely dominated by X if X is a finite complex. 

Whenever we speak of an i?-homotopy equivalence, we really mean an R[iri] 

equivalence—i.e., the induced map C(Y) —»• C(Y) is chain homotopic to the iden­

tity. 

Ranicki defined an instant finiteness obstruction [Ran85]. Importantly, his 

algebraic framework remains applicable even for complexes of modules over a cat­

egory. We will use this "instant" perspective to define the maps Wall and Wall 

for a finitely dominated space. Say that Y is .R-finitely dominated by X with 

Y - L x - ^ Y . Then the map i o r : X —• X induces C(i o r) : C(X) -> C(X), 

the image of which is a chain complex of projective modules. We define Wall(Y) 

to be x(C(i °r)). 

Note that Wall(F) does not depend on the choice of domination, but Wall(F) 

definitely does, and should be thought of as a sort of Euler characteristic. 

The machinery developed in [Ran85] can be adapted to prove 

Proposition 4.3.21. If a space X is R-finitely dominated, and Wall(X) = 0, then 

X is R-homotopy equivalent to a finite complex. 

Or rather, we can show that C(X) is chain equivalent to complex of finitely 

generated free i?-modules. In many cases, this is enough: Leary (in Theorem 9.4, 

[Lea02]), shows that if G is a group of finite type (i.e., BG has finitely many cells 

in each dimension), then G is FL(Q) if and only if G is FH(Q). This means that 

finite domination and the above algebra suffices to get the geometry. 

What we have done thus far for spaces is valid for C-spaces. For instance, a 

finitely dominated C-space is dominated by a finite C-space X, meaning that for 

each c G C, the space X(c) is finite. 
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Proposition 4.3.22. / / Y and Y' are R-finitely dominated cotra- and covariant 

(respectively) C-spaces and C is finite, then 

YxcY' 

is an R-finitely dominated space. 

Proof. This is fairly straightforward: suppose Y and Y' are finitely dominated by 

X and X', respectively. Then we have 

ixri' rxrrf 

Y xc Y' • X xc X' > Y xc Y' 

and it is enough to prove that 

(rxcr') o (i xc i') : C(Y xcY') - C(Y xc Y') 

is an inequivalence, and that J x^ X ' is a finite complex. • 

The finiteness obstruction for a balanced product YXQY' can be computed from 

the finiteness obstructions of the terms Y and Y'; this amounts to an equivariant 

version of the Eilenberg-Zilber theorem, as in [GG99]. 

Proposition 4.3.23. For Y and Y', finitely dominated contravariant and covari­

ant C -spaces, respectively, 

Wall(y xc Y') = Wall(Y) ®c Wall(r')-

This follows from calculations in [L(ic89] (for example, see page 229) relating 

balanced tensor product of chain complexes to the balanced product of spaces. 

4.4 Equivariant finiteness 

Let X be a G-space; we consider X to be a contravariant Or(G)-space by Propo­

sition 4.3.12. 
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G/.H *-+BH = K(H,1), 

and sending the map G/H —» G/H' to the map BH —> J3if' induced from H C # ' . 

Proposition 4.4.2. For a G-space X, 

XxOl{G)B0v(G) 

is associated to the G-space X XQ BG = (X x EG)/G. 

Proposition 4.4.3. The finiteness obstruction WaH(X x0r((j) -BOr(G)) vanishes 

provided 

x(connected component of X ) = 0 

/or ai/ nontrivial subgroups H C G. 

Proof. To calculate 

Wall(X x 0 r ( G ) BOr(G)) = WaU(X) ®0r(G) Wall(BQr(G)) 

note that X is already finite, so Wall(X) is an equivariant Euler characteristic. 

Additionally, since each H is finite, the rational chain complex of BH can be 

taken to be the single module [Q] in degree 0, since [Q] is projective as a QH 

module. 

In other words, Wa\\(B Or(G))(G/H) is [Q]. If all the Euler characteristics of 

all components of fixed sets of X vanish, then the balanced tensor product also 

vanishes—the vanishing Euler characteristic kills each [Q]. • 

4.5 Applications 

There are examples where the equivariant finiteness obstruction vanishes; in this 

section, we will give two sources of such examples: the reflection group trick, and 
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4.5.1 Reflection group trick 

For a description of the reflection group trick, see Section 3.3.2 or [Dav83, Dav08]. 

To illustrate the trick, we construct a group T, with n-torsion, which is the funda­

mental group of a rational homology manifold (in fact, a manifold) with Q-acyclic 

universal cover. Since the fundamental group V has n-torsion, there is no closed, as-

pherical manifold with fundamental group T. Succinctly, we construct T G Mfld(Q) 

with r g AsphMfld(Q), and therefore, also not in AsphMfld(Z). 

Proposition 4.5.1. Let.G = Z x Z n . Then there exists a closd manifold M so 

that 

• 7r\M retracts onto G, 

• M is Q-acyclic. 

Proof. Let -K = Z, so that BX = S . Consider J9Z with the trivial Z n action, 

so that the fixed set (5Z) Z n = B"L = 5 1 , and therefore has vanishing Euler 

characteristic. By the equivariant finiteness theory, there is a finite complex Y 

having ir\Y = Z x Z n and having universal cover Y rationally acyclic. In other 

words, Z x Zn e FH(Q). 

Of course, for this basic example we do not have to apply the general theory: 

it is not that hard to construct, by hand, such a space Y. 

Since Y is finite, it embeds in E ^ for some N, and we can apply the reflection 

group trick to a regular neighborhood of Y C E (see Section 3.3.2), producing 

a manifold (not just a rational homology manifold!) M with universal cover M 

rationally acyclic, and ir\M retracting onto G. • 

Since •K\M retracts onto a group containing n-torsion, ir\M also contains n-

torsion. 

Corollary 4.5.2. There are groups satisfying Mfld(Q) which contain n-torsion for 

any n. 
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In fact, the same proof works for any finite group—not just Z n . 

Corollary 4.5.3. For every finite group G, there exists V G Mfld(Q) with G C T. 

4.5.2 Preliminaries on Lattices 

Historically, the first source of Poincare duality groups were fundamental groups 

of aspherical manifolds, and a basic source of aspherical manifolds are lattices. 

Proposition 4.5.4. Let G be a semisimple Lie group, K a maximal compact, and 

T a torsion-free uniform lattice (i.e., a discrete cocompact subgroup). Then Y\G/K 

is a compact, aspherical manifold with fundamental group Y. 

For an introduction to locally symmetric spaces such as T\G/K, see [Hel62]. 

In other words, uniform torsion-free lattices T satisfy Mfld(Z), and therefore, 

satisfy PD(Z). Next, we examine what happens when T satisfies the weaker con­

dition VPD(Z). 

Proposition 4.5.5. Let G be a finite group, TT a group satisfying PD(Z), and T 

an extension, 

1 - > 7T - > T -* G . - > 1 . 

Then T satisfies PD(Q). 

One can do better than Q: if R = Z[l/G], meaning Z with divisors of \G\ inverted, 

then T is PD(ft). 

Proof. Extensions of Poincare duality groups by Poincare duality groups satisfy 

Poincare duality [JW72], and finite groups are O-dimensional Q-Poincare duality 

groups. • 

Understanding groups satisfying VPD(Z) permits us to examine linear groups 

with torsion, by applying Selberg's lemma [Sel60]. 

Lemma 4.5.6 (Selberg). Every finitely generated linear group contains a finite 

index normal torsion-free subgroup (in other words, is virtually torsion-free). 
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Example 4.5.7. Uniform lattices, even when they contain torsion, satisfy PD(Q) 

because, by Selberg's lemma, a uniform lattice is virtually torsion-free, and there­

fore, satisfies VPD(Z). 

Whether x(F\G/K) vanishes is indepedent of T; it depends only on the Lie 

group G. This is true even if T is non-uniform (via measure equivalence [Gab02] 

and the equality of the L2 and usual Euler characteristic [Ati76, Luc02]). The fixed 

sets are themselves lattices in smaller Lie groups, so it is easy to check that the 

Euler characteristic vanishes on fixed sets. As a result, lattices form a particularly 

nice class with respect to the finiteness obstructions from Section 4.4. 

4.5.3 Vanishing obstructions 

It is not difficult to build explicit examples of groups for which the obstructions 

vanish. 

Proposit ion 4.5.8. There is a uniform arithmetic lattice -K in SO(p, 1) and a Zp 

action on the locally symmetric space 

X = 7r\SO(p,l)/SO(p) 

with fixed set XZP = Sl. 

Proof. We first recall the usual construction of arithmetic lattices; we follow Chap­

ter 15C of [MorOl] and describe how to produce an arithmetic lattice in SO(p, 1). 

Begin by defining a bilinear form 

P 

so that G = SO(B) = SO(p, 1). Note that Zp acts on MP+1 preserving this 

form, and that the action is by integer matrices. Define the lattice x = GQ for 

0 = Z[V2}. 
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The diagonal map A : G —» G x Ga, for a the Galois automorphism of Q(\/2) 

over Q, sends -K to A(7r), a lattice in G x G°\ But Ga = SO(p + 1) is compact, so 

after quotienting, TV is still a lattice in G. And ir is cocompact, by the Godement 

Compactness Criterion (that arithmetic lattices are cocompact precisely when they 

have no nontrivial unipotents [MT62]). 

The action of Zp descends to the quotient (as it preserves the lattice). In the 

universal cover SO(p, l)/SO(p), the set fixed by Zp is a line; in the quotient X, 

it is possible that the action might fix additional points—but it does not, as the 

set fixed by Zp is no more than 1 dimensional, and Zp cannot fix isolated points 

on an odd-dimensional manifold. So the fixed set is a 1-manifold, i.e., a disjoint 

union of circles. • 

By Proposition 4.5.8, there is an extension 

• l - > 7 r - » r - > Z p - > i 

and since x(B'"p) = x(S^) == 0, the equivariant finiteness theory implies that 

there exists a space Y with -K\Y. — T and whose the universal cover Y is a rationally 

acyclic space. In short, T G FH(Q). 

Question 4.5.9. For which n does "L/pL act with nontrivial fixed set on an hyper­

bolic n-manifold? 

This is possible in dimensions 2 and 3 by taking branched covers (as in [GT87]). 

Asking for a nontrivial fixed set is important: Belolipetsky and Lubotzky [BL05] 

have shown that for n > 2, every finite group acts freely on a compact hyperbolic 

n-manifold. 

In contrast, the construction in Proposition 4.5.8 required n > p to get Zp to 

act with nontrivial fixed set. The fact that there are only finitely many arithmetic 

triangle groups [Tak77] is perhaps relevant to answering this question. 

If we relax Question 4.5.9 to a combinatorial curvature condition (i.e., locally 

CAT(—1); see Section 3.2.3), we can easily prove the following. 
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Proposition 4.5.10. For every p and odd n > 3, there is a locally CAT(—1) 

manifold M admitting a Zp action having fixed set M P a disjoint union of circles. 

Proof. In brief, first construct an action of Zp on a closed n-manifold Xn, having 

fixed set a disjoint union of circles, and finish by hyperbolizing. Now we spell out 

a few details. 

Our construction of Xn depends on our assumption that n is odd; in this case, 

Zp acts freely on the odd-dimensional sphere Sn~ , and by taking the join with a 

circle on which Zp acts trivially, we get an action of Zp on Sn — Sn * S having 

fixed set S . 

Triangulate X equivariantly; consequently, the fixed set Sl is in the 1-skeleton 

ofX. 

Now apply strict hyperbolization [CD95, DJ91] to the triangulation of X. The 

hyperbolized space inherits a Zp action (since hyperbolization is functorial with 

respect to infective simplicial maps). The 1-skeleton of the hyperbolization of X 

consists of two copies of X(D , so a fixed circle in X contributes two circles to the 

hyperbolization. D 

We cannot do something similar for even dimensional manifolds (because a Zp 

action with circle fixed set would give, by considering the link of a fixed point, a 

Zp action on an odd dimensional sphere with two fixed points, which is not by 

possible). But by crossing the output of Proposition 4.5.10 with S on which Zp 

acts trivially, we produce an even dimensional CAT(O) manifold with a Zp action 

fixing a disjoint union of tori. That is, we have shown 

Corollary 4.5.11. For every p and every n > 3, there is a locally CAT(O) man­

ifold M admitting a Zp action having non-empty fixed set with vanishing Euler 

characteristic. 
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4.5.4 Shrinking the family 

It would, of course, be beneficial if, in calculating the finiteness obstruction for T, 

l - » 7 r - > r - » G - > l , 

we did not have to consider all the nontrivial subgroups of G. Indeed, the following 

is true: 

Proposit ion 4.5.12. The finiteness obstruction Wall(X x0r(G?) BOr(G)) is a 

finite order element in KQ, provided 

x{connected component ofX ) = 0 

for all cyclic subgroups H C G. 

To see this, we need only prove 4.4.3 somewhat more carefully—noting that 

the cyclic subgroups are minimal. Alternatively, this could be seen by making 

use of the splittings proved in [Liic89]; Luck splits the equivariant A'-theory, and 

proves that the splitting commutes with the finiteness obstruction. Rationally, this 

splitting can be seen to depend only on the cyclic subgroups. 

A natural question, then, is whether all finite order elements of i^o(Qr) are, in 

fact, trivial. As we show in the following section, this is not the case. 

4.5.5 Torsion in KQ 

Conjecturally, for torsion-free groups T, the reduced K-theory KQ(QT) vanishes; 

in other words, every projective Qr-module is stably free. For groups containing 

torsion, this is not the case: I. Leary proved that for every integer n, and every 

field k of characteristic zero, there is a (virtually free) group G for which KQ(ICG) 

contains n-torsion [Lea02]. 
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Here we explain an older example, originally due to Kropholler and Moselle 

[KM91]. Consider (Z2)2 acting on Z3, given by 

a-(x,y,z) = (-x,-y,-z), 

b-(x,y,z) = (x,-y,-z). 

where a and b generate (Z2) . Let T be the extension 

1 - • Z3 -* T -+ (Z2)2 - • 1. 

We now compute .K"o(Qr); in particular, note that KQ(QT) contains 2-torsion. 

Lemma 4.5.13. K0(QT) = Z2 4 0 Z2 . 

Proof. The Farrell-Jones conjecture holds for F with Q-coefficients, and the edge 

homomorphism in the equivariant version of the Atiyah-Hirzebr'uch spectral se­

quence (see [KL05]) gives 

colim K0(QH) ^ K0(QT). 
T/H£Oi(T;!Fm) 

The finite subgroups of T are either trivial, Z2, or (Z2) . The group T contains 

• twelve conjugacy classes of subgroups isomorphic to (Z2), and 

• eight conjugacy classes of subgroups isomorphic to (Z2) . 

Figure 4.1 illustrates the inclusions between the conjugacy classes of finite sub­

groups. That a cube appears should not be surprising: T is an index two subgroup 

of (-Doo)3, and a model for Eyr^Doo)3 is T 3 = (S1)3 , so %ire(Ax>)3/(Ax>)3, as 

an orbifold, is a cube with mirror faces. 

Next we calculate the if-theory for the finite subgroups of T. Note that 

iT0(Q[Z2]) = Z2 is generated by projective Q[Z2]-modules Q+ and Q_. These 

modules are isomorphic to Q as Q-modules; in the former, Q+, the generator of 
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Figure 4.1: Conjugacy classes of finite subgroups of T 
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Z2 acts trivially, and in the latter, Q_, the generator of Z2 acts by multiplication 

by - 1 . Similarly, KQ(<Q[(Z2)
2}) = Z4 is generated by 

, ^ _ + , \j)—, 

where the subscripts record how the two generators of (Z2) act on Q, namely 

either trivially or by multiplication by —1. 

Since the 8 subgroups (Z2)2 are maximal among finite subgroups, the colimit 

will be a quotient of 8 copies of Ko(Q[(^2) ]); in other words, a class in KQ(QT) 

is given by classes in ^o(Q[(Z2)2]), up to equivalences given by the inclusions of 

Ko(Q[Z2]) and i^o(Q[e])- S° w e must study these inclusions. 

The maps i^o(Q[Z2]) —> _KQ(Q[(Z2)2]) depend on which inclusion of.Z2 into 
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(Z2) we axe considering: 

Q_l_ 1—»• Q-H- © Q f. for edges parallel to the rr-axis 

Q_ H-> Q__ © Q + _ 

Q + 1—• Q++ © Q-| for edges parallel to the y-axis 

Q_ ^ Q _ + © Q__ 

Q_l_ 1—• Q++ © Q for edges parallel to the z-axis 

Q_ ^ Q + _ © Q _ + 

The map Ko(Q{e\) ->• ifo(Q[^2]) is given by 

Q i - > Q + 0 Q - . ' 

Counting, we find 68 inclusions between pairs of finite subgroups. 

Rapidly finishing the calculation of KQ(QT), we see that 

8 • K0(Q[(Z2)
2]) © 12 • K0(Q[Z2}) © -^o(QN) = 8 • Z4 © 12 • Z2 © Z = Z57 , 

and that Ko(Qr) is the quotient of this by the 68 relators given above; the resulting 

68 x 57 matrix is given to a computer algebra system (in this case, Sage [sag]), 

converted into Smith normal form, yielding the abelian invariants of the cokernel, 

and proving 

K0(Qr) = z24©z2. 

• 

This method of proof—relying on a computer to compute the cokernel—is not 

very illuminating, but the technique works in general: assuming the Farrell-Jones 

conjecture holds for F, there is an algorithm for computing KQ(QT) provided we 

know the if-groups for the finite subgroups of T and the maps between them. 

In this special bit of work will shed more light on i^o(Qr). We can 
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represent a class in iTo(Qr) as an eight-tuple of classes in KQ(Q[(Z2) ]), up to the 

equivalence relation given by the colimit. A representative for the element of order 

two in ifo(Qr) is 

-Q++ 

Q++ 

-+ 

»-+ 

Q+-
^ o . 

Q-

This element of Ko(Qr) does not vanish because the equivalence relation only 

modifies the module associated to a particular vertex by adding a module having 

dimQ = ±2. We verify that this element actually is order two in Figure 4.2. 

Question 4.5.14. Is there a group F for which the finiteness obstruction is torsion 

in #0(Qr)? 

In fact, the group appearing in Lemma 4.5.13 is such an example, as shown in 

[KM91]. 



Figure 4.2: Two-torsion in K0(QF). 
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CHAPTER 5 

SURGERY 

5.1 Introduction 

Uniform lattices, even when they contain torsion, satisfy PD(Q); a natural question 

then arises: to what extent is this rational Poincare duality "explainable" as having 

arisen from some geometry? Does T satisfy because T is the fundamental group of 

a rational homology manifold having Q-acyclic universal cover? In short, are such 

T also Mfld(Q) groups? 

The following theorem asserts that, at least for uniform lattices with odd tor­

sion, this is not the case—indeed, PD(Q) £ Mfld(Q). 

Theorem 5.1.1. Suppose T is a uniform lattice in a semisimple Lie group, and 

that T contains p-torsion for p ^2. Then there does not exist a Q-homology 

manifold X with 

• fundamental group TT\X = F, and 

• universal cover X Q-acyclic. 

One might hope that the proof would be analogous to the obstruction that the 

Euler characteristic provided with the Lefschetz fixed point theorem (Proposi­

tion 4.2.1), perhaps through an application of the G-signature formula. The trou­

ble with this potential technique is that we do not have a G-signature formula for 

Q-homology manifolds. 

Instead, Theorem 5.1.1 will be proved via a calculation of controlled symmetric 

signatures (which basically amounts to proving a piece of the G-signature formula). 
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Sketch of Proof of Theorem 5.1.1. If there exists such an X as described by the 

theorem, then X is a Q-homology manifold, and therefore, X —> X is a controlled 

Q-Poincare duality complex. This gives a class 

^(X)€?£(£T r i*r;L)®Q,-

called the controlled symmetric signature. 

The constant map ET = E^T —> • = -E^^T induces the assembly map 

Asm : 7^(Ertk,T]L) -+ ?•£(•; L) = L*(Qr). 

But the map ET —> • can be factored as ET —> E^T —»• •; these two maps induce 

Asmg, : nliE^T-h) -+ ^(E^T;L), 

A s r n ^ : 7C(^«fer; L) - ? £ ( . ; L) = L*(QT), 

so-called partial assembly maps factoring Asm = Asnr5£ o A s m ^ . 

Assembling the controlled symmetric signature gives 

Asmo^Hv(X) = <r*(X) E L*(QT), 

which is the usual symmetric signature. But since T is a uniform lattice, we have, 

by Selberg's lemma, a torsion-free finite index subgroup 7t < T, with BIT a closed 

manifold. Thus, ETT is a manifold and model for EjrinT, giving 

°~fin(E'K) £-^*C%«tr';L) 

with Asm^o-J i / t(57r) = c(X) G L*(QT). The Novikov conjecture holds for F, 

meaning A s m ^ ®Q is injective, hence it must be that 

A s m S , 4riv(x) = <£»(**) e nl{E7inY- L) ® q. 
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By restricting to a small neighborhood of a fixed point, we will find that this is 

impossible (i.e., the symmetric signature of a free action cannot give rise to the 

symmetric signature for a fixed point). • 

We need the fact that T is a uniform lattice, in order to apply the Novikov 

conjecture; but this method can be considered whenever T is a group extension 

1 - • 7T - » T - > G - > 1 

with B-K having the homotopy type of a closed manifold, and G finite. S. Wein­

berger has analyzed the situation when T = nxG (see [Wei86a], [Wei86b], [Wei85]). 

5.2 Background 

The classic reference for surgery is [Wal99]; the stratified situation is worked out 

by Weinberger in [Wei94], and the algebraic machinery is developed by Ranicki in 

[Ran92]. 

5.2.1 Families of subgroups 

For a group G, the universal G-space EG is a well-known object in homotopy 

theory; any free G-CW complex admits a G-map to EG. It will be useful to have 

terminal objects for G-spaces with not necessarily free actions, but actions having 

some restriction on their isotropy. 

Definition 5.2.1. A family of subgroups T of a group Gis a collection of subgroups 

of G, closed under conjugation and finite intersection. 

Of particular importance are 

SUC — { all subgroups }, 

7in = { finite subgroups }, and 

Trip = { the trivial subgroup }. 
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But others, like Cyc and VCyc, the cyclic and the virtual cyclic subgroups, respec­

tively, are also important. 

Definition 5.2.2. Let T be a family of subgroups of G; an .F-G-CW-complex is 

a G-CW-complex with isotropy groups in T. An J7-classifying space for G is an 

.F-G-CW-complex EjrG so that the fixed set (Ej?G) is weakly contractible for 

any H €E T. Equivalently, Ej?G is a terminal object in the category of .^-G-CW-

complexes. 

It is possible to construct EjrG for any family of subgroups T of G. For !Ail 

and Triv, these are familiar examples. 

Example 5.2.3. E^G = G/G = •, and E^G = EG. The classifying space 

E<finG classifies proper actions. Some authors denote E^G by EG. 

5.2.2 Equivariant homology theory-

Analogous to the Eilenberg-Steenrod axioms for homology [ES45], there are ax­

ioms characterizing an equivariant homology theory. We will be following the 

presentation given in [DL98]. 

In particular, an equivariant homology theory functorially assigns, to a G-CW-

pair (X,A), the i?-modules H.^{X, A). We write H*(X) to mean 7i^(X,0). 

There is a natural transformation 

v d:HS(X,A)->H?_i(A), 

and the sequence of functors ?{+ satisfies equivariant Eilenberg-Steenrod axioms. 

Homotopy invariance. If 

f0,f1:(X,A)^(Y1B) 

are G-homotopic maps of G-CW-pairs, then H*(fo) = «n/i). 



46 

Exactness. Given a G-CW-pair (X, A), there is a long exact sequence 

• • • - n?+1(X,A) 4* H?(A) -*£> HS(X) A *H°(X,A) - ^ • • • 

where i : A —• X and j : X —* (X, A) are inclusions. 

Excision. For a G-CW-pair (X, A) and a cellular G-map f : A—> B, the natural 

map 

exc : 7iS(X, A) •-=-> H£(X \Jf B, B) 

is an isomorphism. 

Additivity. For a family -pQ}^ / of G-CW-complexes, the natural map 

iGJ \»GJ / 

is an isomorphism. 

As a consequence of the Eilenberg-Steenrod axioms, non-equivariant generalized 

homology theories have a suspension isomorphism;we analogously have an equiv-

ariant suspension isomorphism 

provided n > 1. 

The equivariant homology theories for different groups are often related. 

Definition 5.2.4. Suppose ip : H —> G is a group homomorphism, and X is an 

//-space. Then the induction of X with ip is the G-space 

mdpX = (GxX)/H 

where H acts by (g,x) • h — (g<p(h), h~^ x) for h £ H and (g,x) G G x X. 
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We use induction to relate equivariant G-homology theories for groups G and H. 

Definition 5.2.5. An equivariant homology theory Ti^. is an equivariant homology 

theory H+ for each group G, related by an induction structure. 

An induction structure is the following: given a group homomorphism <p : 

H —y G and an i/-CW-pair (X, A) on which ker ip acts freely, there is a natural 

isomorphism 

indy,: « f (X, A) -^ H^imd^X, A)). 

Remark 5.2.6. Just as homology theories are encoded by spectra [Ada74], equiv­

ariant homology theories correspond to equivariant spectra (in fact, spectra over 

an orbit category—the same machinery that appeared in Section 4.3). 

From now on, we will denote by L# the equivariant spectrum we are interested 

in, namely, L^, ' . If we do not mention the ring, we mean R = Q (in spite of the 

usual convention that R = Z). 

5.2.3 Controlled L-theory 

Controlled L-theory for algebraic Poincare duality complexes with Q-coefficients 

is developed in [RY06]. Our use of the controlled theory is quite soft, so we merely 

record the few facts that we will be using. 

A chapter introducing controlled topology appears in [Wei94]; the basic idea is 

to do topology over a metric space, and measure the sizes of various operations (e.g., 

homotopies) in that metric space. As an example, an .R-homology n-manifold (by 

definition) has the same local .R-homology as Mn, and so it has a "local" Poincare 

duality at all scales. 

Lemma 5.2.7. Let X be a compact R-homology manifold. Then X is an e-

controlled R-Poincare duality complex over itself, for all e > 0. 

A consequence of Theorem 8.5 in [RY06] is the following. 
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Theorem 5.2.8. Let X be a finite polyhedron and suppose M —* X is a fibration 

with path-connected fiber F and Wh(7qjF x Zk) = 0 for all k > 0. Then the 

controlled L-theory of M —> X is a homology theory. 

As in [Ros06], what we require is the vanishing of lower algebraic K-theory. 

With the (-co) decoration, we avoid the if-theoretic difficulties, and controlled 

L-theory is a homology theory. 

5.2.4 Symmetric signature 

A basic invariant of a Poincare duality complex is its signature. The symmetric 

signature is a more refined notion. 

Definition 5.2.9. Suppose X is an i?-Poincare duality complex; by definition, 

this means that the chain complex C+(X) is an algebraic Poincare complex (see 

[RanOl]). The symmetric signature is the class of C*(X) in the cobordism group 

of (symmetric) algebraic Poincare complexes L*(Q[7riX]). 

This can also be done in the controlled setting. 

Definition 5.2.10. Suppose X is a controlled i?-Poincare duality complex over a 

metric space M. Then the controlled symmetric signature is the class 

a*M(X) G Hn(M;hR) 

corresponding to X viewed as an M-controlled .R-Poincare duality complex. 

For a particular application, consider this: an E-homology manifold, being a 

controlled Poincare duality complex over itself, gives rise to a controlled symmetric 

signature. 
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5.2.5 Assembly Maps 

The T-map ET —>• • induces a map on L-homology 

H*(BT; LR) = H£(ET; LR) ^ H$(.; LR) = L*(RT), 

called the assembly map, given a nice geometric interpretation by Quinn [Qui95]. 

The Novikov conjecture (on homotopy invariance of higher signatures [Nov70]) 

is implied by the following conjecture. 

Conjecture 5.2.11. The rational assembly map 

Asm ®Q': H*(BT; L z ) <g> Q -* L*(ZT) <g> Q 

is injective. 

A nice overview on the Novikov conjecture appears in [CW06]. 

In many cases, the assembly map is also integrally injective, even if Z is replaced 

with Q. In particular, the work appearing in [Ros06] implies that 

is injective for V a lattice (possibly with torsion) in a Lie group. This will be 

important in the sequel. 

There are other characterizations of assembly maps; Weiss-Williams, in par­

ticular, characterize assembly maps as an excisive approximation to an arbitrary 

functor [WW95]; this theory has been generalized to the equivariant case in [DL98], 

and so, the forget control map is the usual assembly map Asm. 

5.3 Proof of Theorem 5.1.1 

Assume that there exists X, a Q-homology manifold, with X rationally acyclic 

and 7ri = T, for a lattice T in a semisimple Lie group, where V contains p-torsion 

for p ^ 2. We will show that this is impossible (proving Theorem 5.1.1). 
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l - > 7 i - - > r - > Z p - » l 

with p ^ 2 and TT a torsion-free lattice. For an arbitrary lattice V with p-torsion, by 

Selberg's lemma, V admits a map <p to a finite group H having ker if torsion-free; 

since T has p-torsion, we also have H D Zp. Let Tf = 9?_1(Zp). Then Tf is a finite 

index subgroup of T, so if Tf is not the fundamental group of a closed Q-homology 

manifold with Q-acyclic universal cover, neither is T. 

Since X is a Q-homology manifold, it is an arbtirarily well-controlled Q-

Poincare duality complex over itself; we get a controlled symmetric signature 

4riv(X)en^(X;L). 

Using the T-map X —• £T, we regard c r ^ P O as an element of H^ET;!^). In 

fact, the induced map 

nr
n(X-h)^=nl(ET;L) 

is a rational isomorphism (by an equivariant Atiyah-Hirzebruch spectral sequence), 

but we will not need this fact. 

The class 
a7riv(X) assembles to give a*(X) G L*(Qr); in fact, we have another 

object which assembles to the same (uncontrolled) symmetric signature. 

Lemma 5.3.1. A s m ( r ^ ( X ) = A s m ^ c r ^ E ^ r ) 

Since the integral Novikov conjecture holds for T (see Section 5.2.5), the as­

sembly map is injective, and therefore, the partial assembly map AsnrS-^ is also 

injective. As a result, 

Corollary 5.3.2. Asmg* ^ - ( X ) = o^E^Y). 

In other words, the existence of the rational homology manifold X with ix\X = 

T has resulted in a particular controlled symmetric signature lifting from E^T to 

EY. 
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There is actually one issue here: rationally, it is possible to modify the funda­

mental class without losing Poincare duality. 

Definition 5.3.3 ([Wei86b]). Define an endomorphism of symmetric algebraic 

Poincare complexes, 

Fn:L*(Qr)^L*(®r) 

by multiplying the fundamental class of an algebraic Poincare complex by n. 

The equalities we assert on symmetric signatures are only true after applying 

some Fn; but Fn is an isomorphism (with inverse Fn), so this will not be an issue. 

5.3.1 Induction 

Recall that there is a map <p : T —> Zp with ker <p = ir. Note that 

indy, ET = Bit x EZp, 

ind^ Ey-mT = BTT, 

and since ker y? acts freely on both ET and E<fi„T, we get isomorphisms as described 

in Definition 5.2.5, 

nl(ET; L) -=* nlP(Bir x EZp; L), and 

K^E^L) ^HnP(Bir;h). 

We can put together all the pieces we have thus far in a diagram. 

nl(X;h) • H%(ET;h) ^ ^ V^P(BTT X EZp;L) 

Hl(E!FinT-,L)-^-+HnP(BTr-,h) 

I 
«E(»;L) 
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So we have a^ (BIT) € HIP(BT;L), and this lifts to ^(X) £ HnP(BTrxEZp;h). 

We prove that this is impossible. 

No finite group can act freely on an finite aspherical complex, so the fixed set 

(BTT) P is nonempty; let U be a Zp-equivariant regular neighborhood of some fixed 

point x £ BT. Then the inclusion map j : BK —> (BIT, BIT — U) and excision gives 

4™(*) •-
m m 

HnP(B7rxEZp;lL) 

\3* 
Z 

>7tf(Bx;L) 

1** 
HnP(BTv x EZp, (BTT -U)X EZp; L) — * H^(BT, B-K - U; L) 

exc 

^HnP(U,dU;L) 
exc 

HnP(U x EZp,dU x EZP;L) 

The fixed point x G U is not necessarily isolated; however, U = Y>kV for some 

Zp-space V with an isolated fixed point. This allows us to apply some suspension 

isomorphisms, that is, 

exc j*<rJrriv(X) [ 

(T\ 

••.excj*<T^w(57r) 

m 

•+HnP(U,dU;h) ntP(U x EZp,dU x EZp;h) 

?ffl(ZkV x EZP, dY,kV x EZP\ L) > HnP(ZkV, dEkV; L) 

1 
H2_k(V x EZp,dV x EZp;L) KP_k(V,dV;h) 

The issue, then, is determining the extent to which elements of H ^(V, dV;h) 
Z 

lift to H P
k(V x EZp, dV x EZp, L). To see that this is impossible, we reinterpret 
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= coker (Hn-k(dV/Zp; L) - W^ f c ( . ; L)) 

= coker(?in_ f c(a^/Zp;L)-Ln_ j f c(Q[Zp])) 

The right hand side can be interpreted as 

nlP_k(VxEZp,dVxEZp;h) = 

coker ( w ^ f c ( 0 V x EZp; L) -> ft^(V x EZp; L)) = 

coker (Wn_fc(.aV/Zp; L) - Hn_k(BZp; L)). 

In both these cases, we made use of the Zp-homotopy invariance, exactness for the 

pair, and the isomorphisms coming from the induction structure. 

Following all the maps, the fact that CTO-^BT) lifts to (r^riv(X) yields 

j^d+Z-kexcj+a^X) 
O) 

nn_k(dV/Zp;L) 
II 

Hn„k(dV/Zp;h) 

• • Hn_k(BZp;L) 

i 
>Ln_k(®[Zp}) 

•j*-1a*E-*excj*(T^(57r) 

To analyze V, we build a manifold M with a Zp action, having isolated fixed 

points mi for i G / , all of which have the same normal representation V; this 

can be done by taking a product of surfaces. Let V{ be an equivariant regular 

neighborhood of the fixed point vn,{. Then Zp acts freely on M — |Jj Vi, inducing 

the rightmost vertical map in the following diagram. 
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n7(M- Ui vx L) — n7 (M; L) —» H7(M, M-Ui vr, L) 

I I I" 
TUiBZp-M >«?"(•; L) 0iW*( ,̂aV$;L) 

^*(Q[Zp]) 

The controlled symmetric signature a*(M | M) G 7i*.p(M;]L) maps to 

07i*(V5,a^;L),' 
i 

as the sum of p invariants of V{. If the controlled symmetric signature vanishes 
Z 

under this map, then it comes from 7Y*P(M — | j^ Vf, L), which gives the lift on the 

bottom row of the diagram and therefore a vanishing of the G-signature in 

RO(Zp)/(regular representation). 

But by Theorem 14E.7 in [Wal99], the p invariant is not a multiple of the regular 

representation. This concludes the proof of Theorem 5.1.1 
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