Finite subgroups of rotation groups.

 April 5, 2006 mathematics

\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}}

\newenvironment{question}[1][]{\par\textbf{Question (#1).}}{} \newenvironment{theorem}[1][]{\par\textbf{Theorem (#1).}}{} \newenvironment{lemma}[1][]{\par\textbf{Lemma (#1).}}{} \newenvironment{proof}{\textit{Proof.}}{}

Here is a question that I haven’t been able to find very much about:

What are the finite subgroups of the rotation groups SO(n) ?

For examples, I can take a Coxeter group, and choose elements corresponding to rotations (e.g., the subgroup generated by products of generators), but that’s not going to produce very many examples.