Reflecting Triangles, live

 February 23, 2011 personal mathematics

\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}}

\newenvironment{question}[1][]{\par\textbf{Question (#1).}}{} \newenvironment{theorem}[1][]{\par\textbf{Theorem (#1).}}{} \newenvironment{lemma}[1][]{\par\textbf{Lemma (#1).}}{} \newenvironment{proof}{\textit{Proof.}}{}

A while back I made some movies which began with a triangle in the plane, reflected that triangle through its three sides, reflected those triangles through their sides, and so forth. The interesting result is that for only four shapes of triangles, the resulting set of triangle vertices is discrete.

Using Raphael and a plane geometry package that I wrote, I quickly redid this visualization in Javascript; you can now move the vertices around to see the effect on the reflected triangles.